Chapter 1: Python & AI Introduction

AI Creator's Launchpad

Before you teach AI to think, you must learn to think like a coder. Master the foundations of the $2 Trillion economy.

$2T
AI Market by 2030
90%
AI-Assisted Content
100%
Executable Intelligence

Python: The Language of Creation

Python powers 90% of today's AI research. It's simple, powerful, and universal. Master these 4 blocks to build anything.

1. Variables

Containers for your data.

2. Functions

Reusable mini-programs.

3. Loops

Automate repetitive tasks.

4. Lists & Dicts

Structured data storage.

# Click a concept to see it in action ai_model = "GPT-4o"
Output: Ready...

The Connective Tissue (APIs)

APIs are the bridges. They let your Python code talk to world-class models like DALL-E and Gemini.

Your App

Python Script

API Request

AI Model

OpenAI / Anthropic

Select Your Mini Project

Hands-on builders to internalize every Python + AI concept.

45-60 mins each Earn HI Coins Ready-to-run code Jump to Labs
Communication

Tone Adjuster

Paste an email draft and let AI rewrite it for professional or friendly tones.

  • Prompt frameworks
  • Voice consistency
Education

Explain Like I'm 5

Simplify quantum physics or AI concepts using natural storytelling.

  • System prompts
  • JSON formatting
Content

Social Generator

Generate 3 platform-ready posts with hooks, CTAs, and trending tags.

  • Tone tokens
  • Hook builder
Marketing

Product Writer

Turn feature lists into persuasive marketing descriptions instantly.

  • Feature mapping
  • Persona targeting

Lab 1: Python Foundations

Building the core blocks of your AI applications

1.1 Variables & Types

Variables are labels for boxes holding information. We use int, float, str, and bool to store different data shapes.

In [1]:
my_age = 30
pi_value = 3.14159
user_name = "Alex"
is_learning = True

print(f"Name: {user_name} ({type(user_name)})")
print(f"Age: {my_age}, Learn: {is_learning}")

1.2 Lists: Ordered Items

A list is an ordered, changeable collection. Access items by index (starts at 0).

In [2]:
fruits = ["apple", "banana", "cherry"]
print("Initial:", fruits)
fruits.append("orange")
print("First Item:", fruits[0])
fruits.remove("banana")
print("Modified:", fruits)

Lab 2: Top 15 Interview Problems

A curated guide to mastering technical logic

Q1: Reverse a String

Using Python's slice syntax [::-1] to efficiently return a reversed string.

In [1]:
def reverse_string(s):
    return s[::-1]

print(f"'hello' reversed: {reverse_string('hello')}")

Q2: Palindrome Check

Checking if a string reads the same forwards and backwards after cleaning non-alphanumeric characters.

In [2]:
def is_palindrome(s):
    cleaned = "".join(c.lower() for c in s if c.isalnum())
    return cleaned == cleaned[::-1]

print(f"Is 'A man, a plan, a canal: Panama' a palindrome? {is_palindrome('A man, a plan, a canal: Panama')}")

Q3: Check for Anagrams

Two strings are anagrams if their sorted characters match. We ignore case and spaces.

In [3]:
def are_anagrams(s1, s2):
    return sorted(s1.lower().replace(" ","")) == sorted(s2.lower().replace(" ",""))

print(f"Are 'silent' and 'listen' anagrams? {are_anagrams('silent', 'listen')}")

Q4: Find Missing Number

Calculating the expected sum using n * (n + 1) // 2 and subtracting the actual sum.

In [4]:
def find_missing(nums):
    n = len(nums)
    expected = n * (n + 1) // 2
    return expected - sum(nums)

print(f"Missing in [3, 0, 1]: {find_missing([3, 0, 1])}")

Q5: Find Duplicates in List

Using a Set to track seen items for O(n) lookups.

In [5]:
def find_duplicates(nums):
    seen = set()
    dupes = set()
    for n in nums:
        if n in seen: dupes.add(n)
        else: seen.add(n)
    return list(dupes)

print(f"Duplicates: {find_duplicates([1, 2, 3, 2, 1, 5])}")

Q6: Two-Sum Problem

Finding indices of two numbers adding to target using a dictionary lookup for the complement.

In [6]:
def two_sum(nums, target):
    seen = {}
    for i, num in enumerate(nums):
        comp = target - num
        if comp in seen: return [seen[comp], i]
        seen[num] = i
    return []

print(f"Indices for Target 9: {two_sum([2, 7, 11, 15], 9)}")

Q7: Merge Two Sorted Lists

Using two pointers to merge without a full re-sort for efficiency.

In [7]:
def merge_lists(l1, l2):
    res = []
    i = j = 0
    while i < len(l1) and j < len(l2):
        if l1[i] < l2[j]: res.append(l1[i]); i += 1
        else: res.append(l2[j]); j += 1
    res.extend(l1[i:]); res.extend(l2[j:])
    return res

print(f"Merged: {merge_lists([1, 2, 4], [1, 3, 4])}")

Q8: FizzBuzz Logic

Testing modulo logic: Multiples of 3, 5, or both.

In [8]:
def fizzbuzz(n):
    res = []
    for i in range(1, n+1):
        if i % 15 == 0: res.append("FizzBuzz")
        elif i % 3 == 0: res.append("Fizz")
        elif i % 5 == 0: res.append("Buzz")
        else: res.append(str(i))
    return res

print(fizzbuzz(15))

Q9: Fibonacci Sequence

Comparing iterative vs recursive approaches for generating the n-th number.

In [9]:
def fib(n):
    a, b = 0, 1
    for _ in range(n): a, b = b, a + b
    return a

print(f"10th Fibonacci: {fib(10)}")

Q10: Prime Number Check

Checking divisors up to the square root of n for optimized performance.

In [10]:
import math
def is_prime(n):
    if n < 2: return False
    for i in range(2, int(math.sqrt(n)) + 1):
        if n % i == 0: return False
    return True

print(f"Is 29 Prime? {is_prime(29)}")

Q11: Group Anagrams

Grouping words that share characters by using sorted strings as dictionary keys.

In [11]:
def group_anagrams(strs):
    m = {}
    for s in strs:
        key = "".join(sorted(s))
        if key not in m: m[key] = []
        m[key].append(s)
    return list(m.values())

print(group_anagrams(["eat", "tea", "tan", "ate"]))

Q12: Implement a Stack (LIFO)

Designing a class to support push, pop, and peek using an internal list.

In [12]:
class Stack:
    def __init__(self): self.items = []
    def push(self, i): self.items.append(i)
    def pop(self): return self.items.pop() if self.items else None
    def peek(self): return self.items[-1] if self.items else None

s = Stack()
s.push(10); s.push(20)
print(f"Peek: {s.peek()}, Popped: {s.pop()}")

Q13: List Comprehensions

Creating new lists from existing ones in a single line using [expression for item in list if condition].

In [13]:
nums = [1, 2, 3, 4, 5, 6]
squares_of_evens = [n*n for n in nums if n % 2 == 0]
print(f"Result: {squares_of_evens}")

Q14: Dynamic Arguments

Using *args for extra positional items and **kwargs for extra named parameters.

In [14]:
def demo(*args, **kwargs):
    print(f"Positional: {args}")
    print(f"Keyword: {kwargs}")

demo(1, 2, name="Alice", age=30)

Q15: Simple OOP - Car Class

Defining a constructor and class methods to manage object state.

In [15]:
class Car:
    def __init__(self, make, model, year):
        self.make, self.model, self.year = make, model, year
    def describe(self):
        return f"{self.year} {self.make} {self.model}"

my_car = Car("Toyota", "Camry", 2020)
print(my_car.describe())

Logic Challenges

Warehouse Security Problem

Determining minimum guards needed by calculating overlapping shift depth.

Challenge [1]:
def min_guards(shifts):
    events = []
    for s in shifts:
        events.append((s['start'], 1))
        events.append((s['end'], -1))
    events.sort(key=lambda x: (x[0], x[1]))
    mx, curr = 0, 0
    for _, delta in events:
        curr += delta
        mx = max(mx, curr)
    return mx

shifts = [{"start": 100, "end": 400}, {"start": 300, "end": 600}]
print(f"Guards required: {min_guards(shifts)}")

Sliding Window Processor

Calculating moving averages and max subarray sums using class-based logic.

Challenge [2]:
class WindowProcessor:
    def __init__(self, data, size):
        self._data, self.s = data, size
    def get_moving_average(self):
        res = []
        for i in range(len(self._data) - self.s + 1):
            res.append(sum(self._data[i:i+self.s])/self.s)
        return res

proc = WindowProcessor([1, 3, 2, 6, -1, 4, 1, 8, 2], 5)
print(f"Moving Averages: {proc.get_moving_average()}")
×

Join the Human Intelligence Club

Signal-preserving access for practitioners ready to be measured by applied depth.

Designed for builders entering the Human Intelligence club. Bring your PDF resume and intent snapshot. For companies running talent searches via Human Intelligence Recruiting Agent. Official email + role context required.

Max 10MB. We keep resumes private and route them only to HIRA reviewers.

Already earned access?

×

Log back into the club

Pick up where you left off. Evaluations, trajectories, and HIRA signals stay synced.

New to Human Intelligence?